Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer.

نویسندگان

  • Krishan Kumar
  • Christina R Chow
  • Kazumi Ebine
  • Ahmet D Arslan
  • Benjamin Kwok
  • David J Bentrem
  • Frank D Eckerdt
  • Leonidas C Platanias
  • Hidayatullah G Munshi
چکیده

UNLABELLED Human pancreatic ductal adenocarcinoma (PDAC) tumors are associated with dysregulation of mRNA translation. In this report, it is demonstrated that PDAC cells grown in collagen exhibit increased activation of the MAPK-interacting protein kinases (MNK) that mediate eIF4E phosphorylation. Pharmacologic and genetic targeting of MNKs reverse epithelial-mesenchymal transition (EMT), decrease cell migration, and reduce protein expression of the EMT-regulator ZEB1 without affecting ZEB1 mRNA levels. Paradoxically, targeting eIF4E, the best-characterized effector of MNKs, increases ZEB1 mRNA expression through repression of ZEB1-targeting miRNAs, miR-200c and miR-141. In contrast, targeting the MNK effector hnRNPA1, which can function as a translational repressor, increases ZEB1 protein without increasing ZEB1 mRNA levels. Importantly, treatment with MNK inhibitors blocks growth of chemoresistant PDAC cells in collagen and decreases the number of aldehyde dehydrogenase activity-positive (Aldefluor+) cells. Significantly, MNK inhibitors increase E-cadherin mRNA levels and decrease vimentin mRNA levels in human PDAC organoids without affecting ZEB1 mRNA levels. Importantly, MNK inhibitors also decrease growth of human PDAC organoids. IMPLICATIONS These results demonstrate differential regulation of ZEB1 and EMT by MNKs and eIF4E, and identify MNKs as potential targets in pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signalling to eIF4E in cancer

Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the e...

متن کامل

Simultaneous targeting of androgen receptor (AR) and MAPK-interacting kinases (MNKs) by novel retinamides inhibits growth of human prostate cancer cell lines

Androgen receptor (AR) and MNK activated eIF4E signaling promotes the development and progression of prostate cancer (PCa). In this study, we report that our Novel Retinamides (NRs) target both AR signaling and eIF4E translation in androgen sensitive and castration resistant PCa cells via enhancing AR and MNK degradation through ubiquitin-proteasome pathway. Dual blockade of AR and MNK initiate...

متن کامل

First Mnks degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines

Some retinoic acid metabolism blocking agents (RAMBAs) are known to exhibit a wide range of anticancer activities by mechanisms that are still not completely resolved. This study investigated the anticancer efficacy and mechanism(s) of novel RAMBA retinamides (RRs) in triple negative and Her-2 overexpressing breast cancer cells. Specifically, we examined the possibility that RRs affect the tran...

متن کامل

Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases.

Activation of the translation initiation factor 4E (eIF4E) promotes malignant transformation and metastasis. Signaling through the AKT-mTOR pathway activates eIF4E by phosphorylating the inhibitory 4E binding proteins (4E-BP). This liberates eIF4E and allows binding to eIF4G. eIF4E can then be phosphorylated at serine 209 by the MAPK-interacting kinases (Mnk), which also interact with eIF4G. Al...

متن کامل

CGP57380 enhances efficacy of RAD001 in non-small cell lung cancer through abrogating mTOR inhibition-induced phosphorylation of eIF4E and activating mitochondrial apoptotic pathway

The mammalian target of rapamycin (mTOR) is a potentially important therapeutic target in a broad range of cancer types. mTOR inhibitors such as rapamycin and its analogs (rapalogs) have been proven effective as anticancer agents in non-small cell lung cancer (NSCLC), whereas they strongly enhance phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and activation of Akt, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2016